Combinational Logic Design

Aziz Qaroush

Presentation Outline

* Combinational Circuits
* Analysis Procedure
* Design Procedure
* Binary Adder-Subtractor
* Decimal Adder
* Binary Multiplier
* Magnitude Comparator
* Decoders
* Encoders
* Multiplexers

Combinational Circuit

* A combinational circuit is a block of logic gates having:
n inputs: $x_{1}, x_{2}, \ldots, x_{n}$ m outputs: $f_{1}, f_{2}, \ldots, f_{m}$
* Each output is a function of the input variables
* Each output is determined from present combination of inputs
* Combination circuit performs operation specified by logic gates

Combinational Circuits

* Analysis

\triangleleft Given a circuit, find out its function
\diamond Function may be expressed as:

- Boolean function

- Truth table

* Design

\triangleleft Given a desired function, determine its circuit
\diamond Function may be expressed as:

- Boolean function
- Truth table

ANALYSIS PROCEDURE

1. Label all gate outputs that are a function of input variables. Determine the Boolean function for each gate output
2. Label the gates that are a function of input variables and previously labeled gates. Find the Boolean functions for these gates
3. Repeat step 2 until output of circuits are obtained
4. By repeated substitution of previously defined functions, obtain the output Boolean functions in terms of input variables

Analysis Procedure

Analysis Procedure

1. Determine the number of input variables in the circuit. For n inputs, form the 2^{n} possible input combinations and list the binary numbers from 0 to $2^{n}-1$ in a table
2. label the outputs of selected gates with arbitrary symbols
3. Obtain the truth table for the outputs of those gates which are a function of the input variables only
4. Proceed to obtain the truth table for the outputs of those gates which are a function of previously defined values until the columns for all outputs a determined

Analysis Procedure

Copyright o2013 Pearson Education publisting as Prentice Hall

$F_{1}=A B^{\prime} C^{\prime}+A^{\prime} B C^{\prime}+A^{\prime} B^{\prime} C+A B C$

$F_{2}=A B+A C+B C$

How to Design a Combinational Circuit

1. Specification

\triangleleft Specify the inputs, outputs, and what the circuit should do
2. Formulation
\triangleleft Convert the specification into truth tables or logic expressions for outputs
3. Logic Minimization
\diamond Minimize the output functions using K-map or Boolean algebra
4. Technology Mapping
\diamond Draw a logic diagram using ANDs, ORs, and inverters
\diamond Map the logic diagram into the selected technology
\diamond Considerations: cost, delays, fan-in, fan-out
5. Verification
\diamond Verify the correctness of the design, either manually or using simulation

Designing a BCD to Excess-3 Code Converter

1. Specification
\diamond Convert BCD code to Excess-3 code
\triangleleft Input: BCD code for decimal digits 0 to 9
\diamond Output: Excess-3 code for digits 0 to 9

2. Formulation

\triangleleft Done easily with a truth table
\triangleleft BCD input: a, b, c, d
« Excess-3 output: w, x, y, z
\diamond Output is don't care for 1010 to 1111

BCD a b c d	$\begin{aligned} & \text { Excess-3 } \\ & \text { wxyy } \end{aligned}$
0000	0011
0001	0100
0010	0101
0011	0110
0100	0111
0101	1000
0110	1001
0111	1010
1000	1011
1001	1100
1010 to 1111	X X X X

Designing a BCD to Excess-3 Code Converter

3. Logic Minimization using K-maps

	K-map for w				K-map for x				K-map for y				K-map for z			
$a b$	00	01	11	10	00	01	11	10	00	01	11	10	00	01	11	10
00						1	1	1	1		1		1			1
01		1	(1)	1	1				1		1		1			1
11	X	X	(X)	X	X	X	X	X	X	X	X	X	X	X	X	X
10	1	1	X	X		1	X	X	1		X	X	1		X	X

Minimal Sum-of-Product expressions:

$$
w=a+b c+b d, x=b^{\prime} c+b^{\prime} d+b c^{\prime} d^{\prime}, y=c d+c^{\prime} d^{\prime}, z=d^{\prime}
$$

Additional 3-Level Optimizations: extract common term $(c+d)$

$$
w=a+b(c+d), x=b^{\prime}(c+d)+b(c+d)^{\prime}, y=c d+(c+d)^{\prime}
$$

Designing a BCD to Excess-3 Code Converter

4. Technology Mapping

Draw a logic diagram using ANDs, ORs, and inverters
Other gates can be used, such as NAND, NOR, and XOR

Using XOR gates

$$
\begin{gathered}
x=b^{\prime}(c+d)+b(c+d)^{\prime}=b \oplus(c+d) \\
y=c d+c^{\prime} d^{\prime}=(c \oplus d)^{\prime}=c \oplus d^{\prime}
\end{gathered}
$$

Designing a BCD to Excess-3 Code Converter

5. Verification

Can be done manually
Extract output functions from circuit diagram
Find the truth table of the circuit diagram
Match it against the specification truth table
Verification process can be automated
Using a simulator for complex designs

Truth Table of the Circuit Diagram
abcd $c+d b(c+d)$ w x y z

	0	0	0	0	0	0	0	1	1	
	0	0	0	1	1	0	0	1	0	0
0	0	1	0	1	0	0	1	0	1	
	0	0	1	1	1	0	0	1	1	0
0	1	0	0	0	0	0	1	1	1	
	1	1	0	1	1	1	1	0	0	0
0	1	1	0	1	1	1	0	0	1	
	1	1	1	1	1	1	0	1	0	
1	0	0	0	0	0	1	0	1	1	
1	0	0	1	1	0	1	1	0	0	

BCD to 7-Segment Decoder

* Seven-Segment Display:
\diamond Made of Seven segments: light-emitting diodes (LED)
\diamond Found in electronic devices: such as clocks, calculators, etc.

* BCD to 7-Segment Decoder
\triangleleft Accepts as input a BCD decimal digit (0 to 9)

\diamond Generates output to the seven LED segments to display the BCD digit
\triangleleft Each segment can be turned on or off separately

Designing a BCD to 7-Segment Decoder

1. Specification:
\triangleleft Input: 4-bit BCD (A, B, C, D)
\diamond Output: 7-bit (a, b, c, d, e, f, g)
\diamond Display should be OFF for
Non-BCD input codes
2. Formulation
\triangleleft Done with a truth table
\diamond Output is zero for 1010 to 1111
$\frac{\mathrm{f}}{\mathrm{e} / \mathrm{g} / \mathrm{c}} \mathrm{c}$

Truth Table

BCD input A B C D	7-Segment decoder a b c defg
0000	1111110
0001	0110000
0010	1101101
0011	1111001
0100	0110011
0101	1011011
0110	1011111
0111	1110000
1000	1111111
1001	1111011
1010 to 1111	0000000

Designing a BCD to 7-Segment Decoder

3. Logic Minimization Using K-Maps

K-map for a				
$\begin{array}{r} A B \\ 00 \end{array}$		01	11	10
	1		1	1
01		1	1	1
11				
10	1	1		

$C D$				
K-map for c				
$A B$	00	01	11	10
00	1	1	1	1

$$
\begin{aligned}
& a=A^{\prime} C+A^{\prime} B D+A B^{\prime} C^{\prime}+B^{\prime} C^{\prime} D^{\prime} \\
& b=A^{\prime} B^{\prime}+B^{\prime} C^{\prime}+A^{\prime} C^{\prime} D^{\prime}+A^{\prime} C D \\
& c=A^{\prime} B+B^{\prime} C^{\prime}+A^{\prime} D
\end{aligned}
$$

Extracting common terms
Let $T_{1}=A^{\prime} B, T_{2}=B^{\prime} C^{\prime}, T_{3}=A^{\prime} D$

Optimized Logic Expressions $a=A^{\prime} C+T_{1} D+T_{2} A+T_{2} D^{\prime}$
$b=A^{\prime} B^{\prime}+T_{2}+A^{\prime} C^{\prime} D^{\prime}+T_{3} C$
$c=T_{1}+T_{2}+T_{3}$
T_{1}, T_{2}, T_{3} are shared gates

Designing a BCD to 7-Segment Decoder

3. Logic Minimization Using K-Maps

$C D$ K-map for g				
$\begin{array}{r} A B \\ 00 \end{array}$		01	11	10
			1	1
01	1	1		1
11				
10	1	1		

Optimized Logic Expressions

$$
d=T_{4}+T_{5}+T_{6}+T_{7}+T_{8} D
$$

$$
e=T_{5}+T_{7}
$$

$$
f=T_{4}+T_{5}+T_{8}+T_{9}
$$

$$
g=T_{4}+T_{6}+T_{8}+T_{9}
$$

Designing a BCD to 7-Segment Decoder

4. Technology Mapping

Many Common AND terms: T_{0} thru T_{9}
$T_{0}=A^{\prime} C, T_{1}=A^{\prime} B, T_{2}=B^{\prime} C^{\prime}$
$T_{3}=A^{\prime} D, T_{4}=A B^{\prime} C^{\prime}, T_{5}=B^{\prime} C^{\prime} D^{\prime}$
$T_{6}=A^{\prime} B^{\prime} C, T_{7}=A^{\prime} C D^{\prime}$
$T_{8}=A^{\prime} B C^{\prime}, T_{9}=A^{\prime} B D^{\prime}$
Optimized Logic Expressions
$a=T_{0}+T_{1} D+T_{4}+T_{5}$
$b=A^{\prime} B^{\prime}+T_{2}+A^{\prime} C^{\prime} D^{\prime}+T_{3} C$
$c=T_{1}+T_{2}+T_{3}$
$d=T_{4}+T_{5}+T_{6}+T_{7}+T_{8} D$
$e=T_{5}+T_{7}$
$f=T_{4}+T_{5}+T_{8}+T_{9}$
$g=T_{4}+T_{6}+T_{8}+T_{9}$

Hierarchical Design

* Why Hierarchical Design?

To simplify the implementation of a complex circuit
\star What is Hierarchical Design?
Decompose a complex circuit into smaller pieces called blocks Decompose each block into even smaller blocks

Repeat as necessary until the blocks are small enough
Any block not decomposed is called a primitive block
The hierarchy is a tree of blocks at different levels

* The blocks are verified and well-document
* They are placed in a library for future use

Top-Down versus Bottom-Up Design

* A top-down design proceeds from a high-level specification to a more and more detailed design by decomposition and successive refinement
* A bottom-up design starts with detailed primitive blocks and combines them into larger and more complex functional blocks
* Design usually proceeds top-down to a known set of building blocks, ranging from complete processors to primitive logic gates

BINARY ADDER-SUBTRACTOR

* Half Adder
\triangleleft Adds 1-bit plus 1-bit
\diamond Produces Sum and Carry

- $S=x^{\prime} y+x y$

$$
+y
$$

C S

x	y	C	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Half Adder

* Implementation of half adder

Full Adder

* Adds 1-bit plus 1-bit plus 1-bit * Produces Sum and Carry

x	y	z	C	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

$$
S=x y^{\prime} z^{\prime}+x^{\prime} y z^{\prime}+x^{\prime} y^{\prime} z+x y z=x \oplus y \oplus z
$$

$$
C=x y+x z+y z
$$

Full Adder

Full adder

* Implementation of full adder with two half adders and an OR gate

$$
\begin{aligned}
S & =z \oplus(x \oplus y) \\
& =z^{\prime}\left(x y^{\prime}+x^{\prime} y\right)+z\left(x y^{\prime}+x^{\prime} y\right)^{\prime} \\
& =z^{\prime}\left(x y^{\prime}+x^{\prime} y\right)+z\left(x y+x^{\prime} y^{\prime}\right) \\
& =x y^{\prime} z^{\prime}+x^{\prime} y z^{\prime}+x y z+x^{\prime} y^{\prime} z
\end{aligned}
$$

$C=z\left(x y^{\prime}+x^{\prime} y\right)+x y=x y^{\prime} z+x^{\prime} y z+x y$

Iterative Design: Ripple Carry Adder

* Uses identical copies of a full adder to build a large adder
* Simple to implement: can be extended to add any number of bits
* The cell (iterative block) is a full adder

Adds 3 bits: a_{i}, b_{i}, c_{i}, Computes: Sum s_{i} and Carry-out c_{i+1}

* Carry-out of cell i becomes carry-in to cell $(i+1)$

Carry Propagation

* Major drawback of ripple-carry adder is the carry propagation
* The carries are connected in a chain through the full adders
* This is why it is called a ripple-carry adder
* The carry ripples (propagates) through all the full adders

Converting Subtraction into Addition

* When computing A-B, convert B to its 2 's complement A - B = A + (2's complement of B)
* Same adder is used for both addition and subtraction

This is the biggest advantage of 2's complement

```
borrow: -1-1 carry: 1 1 1 1 1
```


* Final carry is ignored, because
$A+(2$'s complement of $B)=A+\left(2^{n}-B\right)=(A-B)+2^{n}$
Final carry $=2^{n}$, for n-bit numbers

Adder/Subtractor for 2's Complement

* Same adder is used to compute: ($\mathrm{A}+\mathrm{B}$) or ($\mathrm{A}-\mathrm{B}$)
* Subtraction $(A-B)$ is computed as: $A+(2 ' s$ complement of $B)$

2 's complement of $B=(1$'s complement of $B)+1$

* Two operations: OP = 0 (ADD), OP = 1 (SUBTRACT)

Carry versus Overflow

* Carry is important when ...
\diamond Adding unsigned integers
\diamond Indicates that the unsigned sum is out of range
\diamond Sum > maximum unsigned n-bit value
* Overflow is important when ...
\triangleleft Adding or subtracting signed integers
\diamond Indicates that the signed sum is out of range
* Overflow occurs when ...
\triangleleft Adding two positive numbers and the sum is negative
\triangleleft Adding two negative numbers and the sum is positive
* Simplest way to detect Overflow: $V=C_{n-1} \oplus C_{n}$
$\diamond \boldsymbol{C}_{n-1}$ and \boldsymbol{C}_{n} are the carry-in and carry-out of the most-significant bit

Carry and Overflow Examples

* We can have carry without overflow and vice-versa
* Four cases are possible (Examples on 8-bit numbers)

11 1 1 1 0 0 0 0 1 1 1 1 15 +1 1 1 1 1 0 0 0 $248(-8)$ 0 0 0 0 0 1 1 1 7 Carry $=1$ Overflow $=0$					
0					

1								79
0	1	0	0	1	1	1	1	
$+$0 1 0 0 0 0 0 0 04								
1	0	0	0	1	1	1	1	143 (-113)
Carry = 0 Overflow $=1$								

1

+| 1 | 1 | 1 | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | $218(-38)$ |
| 1 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | $157(-99)$ |
| 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 119 |
| Carry $=1$ | | | | | | | | |
| Overflow $=1$ | | | | | | | | |

Four-bit adder-subtractor

* M: Control Signal (Mode)
- $M=0 \rightarrow F=x+y$
- $M=1 \rightarrow F=x-y$

DECIMAL ADDER (BCD Adder)

Consider adding two decimal digits in BCD
Operands and Result: 0 to 9
Output sum cannot exceed $9+9+1=19$ (the last 1 is the carry from previous digit)

+	x_{3}	x_{2}	x_{1}	x_{0}
+	y_{3}	y_{2}	y_{1}	y_{0}
	S_{3}	S_{2}	S_{1}	S_{0}

BCD	1	1		
	0001	1000	0100	184
	$+\underline{0101}$	$\frac{0111}{10000}$	$\frac{0110}{1010}$	+576
Binary sum		$\frac{0110}{011}$	$\frac{0110}{0000}$	$\overline{760}$
Add 6	$\overline{0111}$	$\overline{0110}$		
BCD sum				

Derivation of BCD Adder

BCD Adder

* Correct Binary Adder's Output (+6)
- If the result is between ' A ' and ' F '
- If $\mathrm{K}=1$

| $Z_{8} Z_{4}$ | Z_{2} | Z_{1} | $E r r$ | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 |
| | | | | |
| 1 | 0 | 0 | 0 | 0 |
| 1 | 0 | 0 | 1 | 0 |
| 1 | 0 | 1 | 0 | 1 |
| 1 | 0 | 1 | 1 | 1 |
| 1 | 1 | 0 | 0 | 1 |
| 1 | 1 | 0 | 1 | 1 |
| 1 | 1 | 1 | 0 | 1 |
| 1 | 1 | 1 | 1 | 1 |

$\boldsymbol{E r r}=Z_{8} Z_{4}+Z_{8} Z_{2}$

Block diagram of a BCD adder

Two-bit by two-bit binary multiplier

$$
\begin{array}{cccc}
& & B_{1} & B_{0} \\
& & A_{1} & A_{0} \\
\hline & & A_{0} B_{1} & A_{0} B_{0} \\
& A_{1} B_{1} & A_{1} B_{0} & \\
\hline C_{3} & C_{2} & C_{1} & C_{0}
\end{array}
$$

Four-bit by three-bit binary multiplier

[^0]
Magnitude Comparator

* A combinational circuit that compares two unsigned integers
* Two Inputs:
\diamond Unsigned integer A (m-bit number)
\triangleleft Unsigned integer B (m-bit number)
* Three outputs:

$$
\begin{aligned}
& \diamond A>B \text { (GT output) } \\
& \diamond A=B \text { (EQ output) } \\
& \diamond A<B \text { (LT output }
\end{aligned}
$$

* Exactly one of the three outputs must be equal to 1
* While the remaining two outputs must be equal to 0

Example: 4-bit Magnitude Comparator

* Inputs:
$\diamond A=A_{3} A_{2} A_{1} A_{0}$
$\diamond B=B_{3} B_{2} B_{1} B_{0}$
$\diamond 8$ bits in total $\rightarrow 256$ possible combinations
\triangleleft Not simple to design using conventional K-map techniques
* The magnitude comparator can be designed at a higher level
* Let us implement first the $E Q$ output (A is equal to B)
$\diamond E Q=1 \leftrightarrow A_{3}=B_{3}, \quad A_{2}=B_{2}, A_{1}=B_{1}$, and $A_{0}=B_{0}$
\diamond Define: $E_{i}=A_{i} B_{i}+A_{i}^{\prime} B_{i}^{\prime}$
\diamond Therefore, $E Q=E_{3} E_{2} E_{1} E_{0}$

The Greater Than Output

* Given the 4-bit input numbers: A and B

1. If $A_{3}>B_{3}$ then $G T=1$, irrespective of the lower bits of A and B

Define: $G_{3}=A_{3} B_{3}^{\prime}\left(A_{3}=1\right.$ and $\left.B_{3}=0\right)$
2. If $A_{3}=B_{3}\left(E_{3}=1\right)$, we compare A_{2} with B_{2}

Define: $G_{2}=A_{2} B_{2}^{\prime}\left(A_{2}=1\right.$ and $\left.B_{2}=0\right)$
3. If $A_{3}=B_{3}$ and $A_{2}=B_{2}$, we compare A_{1} with B_{1}

Define: $G_{1}=A_{1} B_{1}^{\prime}\left(A_{1}=1\right.$ and $\left.B_{1}=0\right)$
4. If $A_{3}=B_{3}$ and $A_{2}=B_{2}$ and $A_{1}=B_{1}$, we compare A_{0} with B_{0} Define: $G_{0}=A_{0} B_{0}^{\prime}\left(A_{0}=1\right.$ and $\left.B_{0}=0\right)$

* Therefore, $G T=G_{3}+E_{3} G_{2}+E_{3} E_{2} G_{1}+E_{3} E_{2} E_{1} G_{0}$

The Less Than Output

* We can derive the expression for the $L T$ output, similar to $G T$

Given the 4-bit input numbers: A and B

1. If $A_{3}<B_{3}$ then $L T=1$, irrespective of the lower bits of A and B

Define: $L_{3}=A_{3}^{\prime} B_{3} \quad\left(A_{3}=0\right.$ and $\left.B_{3}=1\right)$
2. If $A_{3}=B_{3}\left(E_{3}=1\right)$, we compare A_{2} with B_{2}

Define: $L_{2}=A_{2}^{\prime} B_{2} \quad\left(A_{2}=0\right.$ and $\left.B_{2}=1\right)$
3. Define: $L_{1}=A_{1}^{\prime} B_{1} \quad\left(A_{1}=0\right.$ and $\left.B_{1}=1\right)$
4. Define: $L_{0}=A_{0}^{\prime} B_{0} \quad\left(A_{0}=0\right.$ and $\left.B_{0}=1\right)$

* Therefore, $L T=L_{3}+E_{3} L_{2}+E_{3} E_{2} L_{1}+E_{3} E_{2} E_{1} L_{0}$

Knowing $G T$ and $E Q$, we can also derive $L T=(G T+E Q)^{\prime}$

Magnitude Comparator

Iterative Magnitude Comparator Design

* The Magnitude comparator can also be designed iteratively

4-bit magnitude comparator is implemented using 4 identical cells
Design can be extended to any number of cells

* Comparison starts at least-significant bit
* Final comparator output: $G T=G T_{4}, E Q=E Q_{4}, L T=L T_{4}$

Cell Implementation

* Each Cell i receives as inputs:

Bit i of inputs A and $B: A_{i}$ and B_{i} $G T_{i}, E Q_{i}$, and $L T_{i}$ from cell ($i-1$)
$*$ Each Cell i produces three outputs:
$G T_{i+1}, E Q_{i+1}$, and $L T_{i+1}$

Outputs of cell i are inputs to cell $(i+1)$

* Output Expressions of Cell i

$$
\begin{array}{ll}
E Q_{i+1}=E_{i} E Q_{i} & E_{i}=A_{i}^{\prime} B_{i}^{\prime}+A_{i} B_{i}\left(A_{i} \text { equals } B_{i}\right) \\
G T_{i+1}=A_{i} B_{i}^{\prime}+E_{i} G T_{i} & A_{i} B_{i}^{\prime}\left(A_{i}>B_{i}\right) \\
L T_{i+1}=A_{i}^{\prime} B_{i}+E_{i} L T_{i} & A_{i}^{\prime} B_{i}\left(A_{i}<B_{i}\right)
\end{array}
$$

Third output can be produced for first two: $L T=(E Q+G T)^{\prime}$

Cascading two Comparators

Binary Decoders

* Given a n-bit binary code, there are 2^{n} possible code values
* The decoder has an output for each possible code value
* The n-to- 2^{n} decoder has n inputs and 2^{n} outputs
* Depending on the input code, only one output is set to logic 1
* The conversion of input to output is called decoding

A decoder can have less than 2^{n} outputs if some input codes are unused

Binary Decoders

Examples of Binary Decoders

Decoder Implementation

Each decoder output is a minterm

Using Decoders to Implement Functions

* A decoder generates all the minterms
* A Boolean function can be expressed as a sum of minterms
* Any function can be implemented using a decoder + OR gate Note: the function must not be minimized
* Example: Full Adder sum $=\Sigma(1,2,4,7)$, cout $=\Sigma(3,5,6,7)$

Inputs	Outputs	
a b c	cout	sum
000	0	0
001	0	1
010	0	1
011	1	0
100	0	1
101	1	0
110	1	0
111	1	1

Using Decoders to Implement Functions

* Good if many output functions of the same input variables
* If number of minterms is large \rightarrow Wider OR gate is needed
* Use NOR gate if number of maxterms is less than minterms
* Example: $f=\Sigma(2,5,6), g=\Pi(3,6) \rightarrow g^{\prime}=\Sigma(3,6), h=\Sigma(0,5)$

Inputs	Outputs		
a b c	f	g	h
000	0	1	1
001	0	1	0
010	1	1	0
011	0	0	0
100	0	1	0
101	1	1	1
110	1	0	0
111	0	1	0

2-to-4 Decoder with Enable Input

Truth Table

Inputs		Outputs			
EN	a_{1}	a_{0}	d_{0}	d_{1}	d_{2}
d_{3}					
0	X	X	0	0	0
1	0	0	1	0	0
1	0	1	0	1	0
1	1	0	0	0	1

If $E N$ input is zero then all outputs are zeros, regardless of a_{1} and a_{0}

Decoders

* Active-High / Active-Low

I_{1}	I_{0}	Y_{3}	Y_{2}	Y_{1}	Y_{0}
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	1
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	1	$\mathbf{0}$
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	1	$\mathbf{0}$	$\mathbf{0}$
$\mathbf{1}$	$\mathbf{1}$	1	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$

I_{1}	I_{0}	Y_{3}	Y_{2}	Y_{1}	Y_{0}
0	0	1	1	1	0
0	1	1	1	0	1
1	0	1	0	1	1
1	1	0	1	1	1

$-I_{1}$

Implementation Using Decoders

Building Larger Decoders

* Larger decoders can be build using smaller ones
* A 3-to-8 decoder can be built using:

Two 2-to-4 decoders with Enable and an inverter (1-to-2 decoder)

Inputs									Outputs								
a_{2}	a_{1}	a_{0}	d_{0}	d_{1}	d_{2}	d_{3}	d_{4}	d_{5}	d_{6}								
0	0	0	1	0	0	d_{7}											
0	0	1	0	1	0	0	0	0	0								
0	0	0															
0	1	0	0	0	1	0	0	0	0								

Building Larger Decoders

\section*{| A 4-to-16 |
| :---: |
| decoder with |
| enable can be |
| built using five |
| 2-to-4 decoders |
| with enables |}

Encoders

* An encoder performs the opposite operation of a decoder
* It converts a 2^{n} input to an n-bit output code
* The output indicates which input is active (logic 1)
* Typically, one input should be 1 and all others must be 0's
* The conversion of input to output is called encoding

A encoder can have less than 2^{n} inputs if some input lines are unused

Example of an 8-to-3 Binary Encoder

$\% 8$ inputs, 3 outputs, only one input is 1 , all others are 0 's

* Encoder generates the output binary code for the active input
* Output is not specified if more than one input is 1

Inputs										Outputs			
d_{7}	d_{6}	d_{5}	d_{4}	d_{3}	d_{2}	d_{1}	d_{0}	a_{2}	a_{1}	a_{0}			
0	0	0	0	0	0	0	1	0	0	0			
0	0	0	0	0	0	1	0	0	0	1			
0	0	0	0	0	1	0	0	0	1	0			
0	0	0	0	1	0	0	0	0	1	1			
0	0	0	1	0	0	0	0	1	0	0			
0	0	1	0	0	0	0	0	1	0	1			
0	1	0	0	0	0	0	0	1	1	0			
1	0	0	0	0	0	0	0	1	1	1			

8-to-3 Binary Encoder Implementation

Binary Encoder Limitations

* Exactly one input must be 1 at a time (all others must be 0's)
\& If more than one input is 1 then the output will be incorrect
* For example, if $d_{3}=d_{6}=1$

Then $a_{2} a_{1} a_{0}=111$ (incorrect)

* Two problems to resolve:

$$
\begin{aligned}
& a_{2}=d_{4}+d_{5}+d_{6}+d_{7} \\
& a_{1}=d_{2}+d_{3}+d_{6}+d_{7} \\
& a_{0}=d_{1}+d_{3}+d_{5}+d_{7}
\end{aligned}
$$

1. If two inputs are 1 at the same time, what should be the output?
2. If all inputs are 0 's, what should be the output?

* Output $a_{2} a_{1} a_{0}=000$ if $d_{0}=1$ or all inputs are 0 's How to resolve this ambiguity?

Priority Encoder

* Eliminates the two problems of the binary encoder
* Inputs are ranked from highest priority to lowest priority
* If more than one input is active (logic 1) then priority is used

Output encodes the active input with higher priority

* If all inputs are zeros then the V (Valid) output is zero Indicates that all inputs are zeros

Condensed
Truth Table
All 16 cases
are listed

Inputs				Outputs		
d_{3}	d_{2}	d_{1}	d_{0}	a_{1}	a_{0}	V
0	0	0	0	X	X	0
0	0	0	1	0	0	1
0	0	1	X	0	1	1
0	1	X	X	1	0	1
1	X	X	X	1	1	1

Implementing a 4-to-2 Priority Encoder

Inputs					Outputs		
d_{3}	d_{2}	d_{1}	d_{0}	a_{1}	a_{0}	V	
0	0	0	0	X	X	0	
0	0	0	1	0	0	1	
0	0	1	X	0	1	1	
0	1	X	X	1	0	1	
1	X	X	X	1	1	1	

$$
\begin{aligned}
& \text { Output Expressions: } \\
& a_{1}=d_{3}+d_{2} \\
& a_{0}=d_{3}+d_{1} d_{2}^{\prime} \\
& V=d_{3}+d_{2}+d_{1}+d_{0}
\end{aligned}
$$

Encoder / Decoder Pairs

Multiplexers

* Selecting data is an essential function in digital systems
* Functional blocks that perform selecting are called multiplexers
* A Multiplexer (or Mux) is a combinational circuit that has:
\diamond Multiple data inputs (typically 2^{n}) to select from
\diamond An n-bit select input S used for control
\diamond One output Y

* The n-bit select input directs one of the data inputs to the output

Multiplexers

Examples of Multiplexers

* 2-to-1 Multiplexer if $(S==0) Y=d_{0}$; else $Y=d_{1}$;

Logic expression:
$Y=d_{0} S^{\prime}+d_{1} S$

* 4-to-1 Multiplexer
if $\left(S_{1} S_{0}==00\right) Y=d_{0}$; else if $\left(S_{1} S_{0}==01\right) Y=d_{1}$; else if $\left(S_{1} S_{0}==10\right) Y=d_{2}$; else $Y=d_{3}$;

Inputs						Output
S_{1}	S_{0}	d_{0}	d_{1}	d_{2}	d_{3}	Y
0	0	0	X	X	X	$0=d_{0}$
0	0	1	X	X	X	$1=d_{0}$
0	1	X	0	X	X	$0=d_{1}$
0	1	X	1	X	X	$1=d_{1}$
1	0	X	X	0	X	$0=d_{2}$
1	0	X	X	1	X	$1=d_{2}$
1	1	X	X	X	0	$0=d_{3}$
1	1	X	X	X	1	$1=d_{3}$

Implementing Multiplexers

3-State Gate

* Logic gates studied so far have two outputs: 0 and 1
* Three-State gate has three possible outputs: $0,1, Z$
$\diamond \mathbf{Z}$ is the Hi-Impedance output
$\diamond \mathbf{Z}$ means that the output is disconnected from the input
\diamond Gate behaves as an open switch between input and output
* Input c connects input to output
$\diamond \boldsymbol{c}$ is the control (enable) input
\diamond If \boldsymbol{c} is $\mathbf{0}$ then $\boldsymbol{f}=\mathbf{Z}$
\diamond If \boldsymbol{c} is $\mathbf{1}$ then $\boldsymbol{f}=$ input \boldsymbol{x}

3-state gate

\mathbf{c}	\mathbf{x}	\mathbf{f}
0	0	\mathbf{Z}
0	1	\mathbf{Z}
$\mathbf{1}$	0	0

Variations of the 3-State Gate

* Control input cand output \boldsymbol{f} can be inverted
* A bubble is inserted at the input \boldsymbol{c} or output \boldsymbol{f}

inverted c

\mathbf{c}	\mathbf{x}	\mathbf{f}
0	0	0
0	1	1
1	0	Z
1	1	Z

$$
c \quad x \quad f
$$

0 Z
0 1 Z
101
110

$$
\begin{array}{l|l|l}
\mathbf{c} & \mathbf{x} & \mathbf{f} \\
\hline 0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & \mathbf{Z} \\
\hline 1 & 1 & \mathbf{Z}
\end{array}
$$

Wired Output

Logic gates with 0 and 1 outputs cannot have their outputs wired together

3-state gates can wire their outputs together

At most one 3-state gate can be enabled at a time

Otherwise, conflicting outputs will burn the circuit

This will result in a short circuit that will burn the gates

$\mathbf{C 1}$	$\mathbf{C 2}$	$\mathbf{c} 3$	f
0	0	0	Z
1	0	0	$x 1$
0	1	0	$x 2$
0	0	1	$x 3$
0	1	1	Burn
1	0	1	Burn
1	1	0	Burn
1	1	1	Burn

Implementing Multiplexers with 3-State Gates

A Multiplexer can also be implemented using:

1. A decoder
2. Three-state gates

Building Larger Multiplexers

Larger multiplexers can be built hierarchically using smaller ones

Implementing a Function with a Multiplexer

* A Multiplexer can be used to implement any logic function
* The function must be expressed using its minterms
* Example: Implement $F(a, b, c)=\Sigma(1,2,6,7)$ using a Mux
* Solution:

The inputs are used as select lines to a Mux. An 8-to-1
Mux is used because there are 3 variables

Better Solution with a Smaller Multiplexer

* Re-implement $F(a, b, c)=\Sigma(1,2,6,7)$ using a 4-to-1 Mux
* We will use the two select lines for variables a and b
* Variable c and its complement are used as inputs to the Mux

Implementing Functions: Example 2

Implement $F(a, b, c, d)=\Sigma(1,3,4,11,12,13,14,15)$ using 8-to-1 Mux

Inputs				Output	Comment
a	b	c	d	F	F
0	0	0	0	0	
0	0	0	1	1	$F=d$
0	0	1	0	0	$F=d$
0	0	1	1	1	
0	1	0	0	1	$F=d^{\prime}$
0	1	1	0	0	
0	1	1	1	0	$F=0$
1	0	0	0	0	$F=0$
1	0	0	1	0	
1	0	1	0	0	$F=d$
1	0	1	1	1	
1	1	0	0	1	$F=1$
1	1	0	1	1	$F=1$
1	1	1	0	1	$F=1$
	1	1	1	1	

Demultiplexer

* Performs the inverse operation of a Multiplexer
* A Demultiplexer (or Demux) is a combinational circuit that has:

1. One data input I
2. An n-bit select input S
3. A maximum of 2^{n} data outputs

* The Demux directs the data input to one of the outputs

According to the select input S

Demultiplexer

Examples of Demultiplexers

* 1-to-2 Demultiplexer
if $(S==0)\left\{d_{0}=I ; d_{1}=0 ;\right\}$
else $\left\{d_{1}=I ; d_{0}=0 ;\right\}$
Output expressions:
$d_{0}=I S^{\prime} ; d_{1}=I S$

1-to-4 Demultiplexer
if $\left(S_{1} S_{0}==00\right)\left\{d_{0}=I ; d_{1}=d_{2}=d_{3}=0 ;\right\}$
else if $\left(S_{1} S_{0}==01\right)\left\{d_{1}=I ; d_{0}=d_{2}=d_{3}=0 ;\right\}$ else if $\left(S_{1} S_{0}==10\right)\left\{d_{2}=I ; d_{0}=d_{1}=d_{3}=0 ;\right\}$ else $\left\{d_{3}=I ; d_{0}=d_{1}=d_{2}=0 ;\right\}$
Output expressions:

$$
d_{0}=I S_{1}^{\prime} S_{0}^{\prime} ; d_{1}=I S_{1}^{\prime} S_{0} ; d_{2}=I S_{1} S_{0}^{\prime} ; d_{3}=I S_{1} S_{0}
$$

Examples of Demultiplexers

Demultiplexer = Decoder with Enable

* A 1-to-4 demux is equivalent to a 2-to-4 decoder with enable Demux select input S_{1} is equivalent to Decoder input a_{1}

Demux select input S_{0} is equivalent to Decoder input a_{0} Demux Input I is equivalent to Decoder Enable EN

Think of a decoder as directing the Enable signal to one output

* In general, a demux with n select inputs and 2^{n} outputs is equivalent to a n-to- 2^{n} decoder with enable input

Multiplexer / DeMultiplexer Pairs

[^0]: Copyright 02013 Pearson Education, publishing as Prentice Hall

